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ABSTRACT

Recently, the Computational Engineering Mathematics program at the United States Military Academy has made significant

advancements in determining suitable locations of nodal points (or model sources) for use in meshless numerical methods for

partial differential equations such as the Complex Variable Boundary Element Method (CVBEM). The latest node positioning

algorithm (NPA) to emerge from the group was used to develop high-precision outcomes for several benchmark problems in

potential flow. Such high-precision outcomes provide more confidence in the predictions obtained for various geoscience results.

For example, groundwater flow models are of high importance to many areas of analysis in which a key point of investigation is

determination of the location of a source of contamination given a location of damage downstream caused by accumulation of the

contamination. The improved computational accuracy afforded by the coupled CVBEM/NPA models buttresses the other forms of

evidence typically used in performing such a forensics analysis including geochemical testing and dating of chemical compounds,

among other techniques. In this paper, we apply the recent NPA to model a new set of challenging computational problems with

the goal of identifying the likely source of a hypothetical contamination among a set of candidate sources.

Keywords: contamination detection, potential flow, Complex Variable Boundary Element Method (CVBEM), node positioning

algorithms (NPAs), mesh reduction methods, applied complex variables

1 INTRODUCTION

The Complex Variable Boundary Element Method (CVBEM) [1, 2] is a numerical procedure for approximating the

solution of boundary value problems (BVPs) of the Laplace and related partial differential equations (PDEs) [3, 4]. In

the early 2000’s, the CVBEM methodology was extended to modeling BVPs in three and higher spatial dimensions

[5, 6]. Recent developments have focused on developing algorithms for determining suitable locations of collocation

points and computational nodes for use in CVBEM models [7, 8, 9]. The CVBEM is related to other mesh reduction

numerical methods for PDEs including the real variable boundary element methods [10, 11] and the Method of Fun-

damental Solutions (MFS) [12, 13]. Several studies have focused on the application of the CVBEM to groundwater



modeling and contaminant transport, and this work builds upon these studies [14, 15, 16].

The CVBEM approximation function is constructed as a linear combination of complex variable basis functions

that are each analytic within a prescribed simply-connected problem domain, ⌦:

!̂(z) =
nX

j=1

cjgj(z), z 2 ⌦, (1)

where cj 2 C denotes a complex coefficient and gj : C ! C is analytic within ⌦. Since cj is a complex coefficient, it

has two parts: a real part and an imaginary part. Thus, for n coefficients, there are 2n unknown values that need to be

determined in the CVBEM modeling process. These coefficients can be determined in a number of ways including by

collocation or least squares minimization. When collocation is used, it is necessary to specify 2n collocation points

on the problem boundary where the value of the boundary conditions are known and will be enforced. In this case,

the coefficients of Equation (1) are determined so that the CVBEM approximation function matches the specified

boundary conditions at the given collocation points with the exception of possible truncation, round-off, and other

numerically-introduced errors.

Importantly, since the basis functions are selected such that they are analytic within ⌦, the CVBEM approximation

function is a linear combination of analytic functions and is, therefore, analytic itself. Therefore, the real and imaginary

parts of the CVBEM approximation function are related by the Cauchy-Riemann equations:

@�̂
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. (2)

From the Cauchy-Riemann equations, it follows that the real and imaginary parts of the CVBEM approximation

function are harmonic functions. That is,

��̂ = 0 where �̂(x, y) = < [!̂(z)] , (x+ iy) 2 ⌦

� ̂ = 0 where  ̂(x, y) = = [!̂(z)] , (x+ iy) 2 ⌦.
(3)

Consequently, since the real and imaginary parts of the CVBEM approximation function satisfy Laplace’s equation,

the error of the approximation function is assessed by examining the closeness of fit of the approximation function to

the specified boundary conditions. The maximum error of the CVBEM approximation function can be assessed using

the maximum modulus principle for harmonic functions [17]. This is done by determining the maximum departure

on the problem boundary of the CVBEM approximation function from the specified boundary conditions. That is, the

maximum error, E, can be expressed as:

E = max
(x,y)2@⌦

����̂(x, y)� �(x, y)
��� , (4)



where �(x, y) denotes the target potential function.

Additionally, since �̂ and  ̂ are conjugate functions, their level curves are orthogonal, resulting in the well-known

flownet graphical display that applies to numerous applications in science, mathematics, engineering, and related fields

[18]. This dual harmonic function outcome in the CVBEM is of particular value when analyzing boundary value prob-

lems of the mixed type. Such properties do not similarly exist for real valued functions and associated computational

methods such as the finite difference method or finite element method (FEM). This is a principal motivation for using

CVBEM-type approximation functions to solve problems that occur in the many fields involved with the geosciences

as well as other technical areas.

In this work, the coupled CVBEM/NPA approach is used to computationally solve difficult problems of groundwa-

ter flow where high-precision modeling outcomes are needed. The focus is to provide further evidence to supplement

the usual geochemical evidence in order to determine the source of a contaminant in the groundwater from among a

set of candidate source points given the location of the downstream contamination site [19].

2 SUMMARY OF NPA PROCEDURES AND APPLYING AN NPA TO THE CVBEM

An important step in the modeling procedure is the selection of computational nodes, which are the branch points

of the basis functions. Originally, the CVBEM methodology called for placing nodes on the problem boundary [2].

More recent implementations of the CVBEM have relaxed this constraint and used computational lodes located in

the exterior of ⌦ [ @⌦, which is similar to the approach taken in the MFS [20]. The next evolution of the procedure

has involved the development and utilization of NPAs to systematically locate computational nodes with the goal of

reducing computational model error [8, 9].

In general, the NPAs under study by our research group have the following steps:

1. Generate an initial distribution of candidate computational nodes and candidate collocation points. The candi-

date collocation points are located on the problem boundary and are where the boundary conditions are enforced.

The candidate computational nodes are located in the exterior of ⌦ [ @⌦.

2. Initialize the NPA by selecting two collocation points to be used in the CVBEM model. Two collocation points

are needed for the reason described above, which is that each complex coefficient of Equation (1) has two real

parts. These unknown real values are determined by collocation. Therefore, each node corresponds to two

collocation points.

3. For each of the candidate computational nodes, create a new CVBEM model by adding the candidate node to

the current CVBEM model. Evaluate each of these models to determine the maximum error on the problem

boundary using Equation (4) that corresponds to the use of the particular candidate node. Recall, the maximum

error of the CVBEM approximation function is known to occur on the problem boundary as a consequence of



the maximum modulus principle. After evaluating each of these models, select the model that resulted in the

least error in satisfying the given boundary conditions, and add the appropriate node to the CVBEM model.

4. Evaluate the error on the boundary of the CVBEM approximation function using Equation (4). Select two new

collocation points to be located on the problem boundary at the two greatest local maxima of the error function.

5. Repeat Steps 3 and 4 until 2n collocation points have been selected and n computational nodes have been

selected. The final CVBEM model will consist of these 2n collocation points and n computational nodes. This

model can be used to generate flownet graphical displays of the potential problem.

Variations of the procedure discussed in these steps have been considered. For example, the NPA discussed in

[9] incorporates a refinement procedure, which is used to re-evaluate the utility of previously-selected computational

nodes and potentially replace those nodes with different nodes if it is found that the replacement further reduces the

error of the CVBEM model.

However, the common feature of the recent NPAs used by our group is that the algorithm proceeds by alternately

selecting two collocation points followed by one computational node. This is important because the challenge of

selecting each node is reduced to a single variable optimization problem since the only quantity that is varying is the

location of the computational node to be added to the CVBEM model. Ordinarily, such optimization problems are

solved by taking the partial derivative of an objective function and setting the result equal to zero. In this case, the

objective function is Equation (4), and we solve this problem computationally by exhaustively testing each candidate

computational node to determine which one optimizes the objective function by resulting in the CVBEM model of

least error.

While it can be computationally expensive to use these NPAs, the benefit of using them is that it is possible to

achieve highly efficient uses of computational nodes and collocation points. That is, using these NPAs can result in

CVBEM models that use relatively few nodes and collocation points, but still achieve the same or better accuracy

compared to much larger CVBEM models where the locations of the collocation points and nodes have not been

determined by an NPA.

3 PROBLEM DESCRIPTION

In this work, we consider three different example problems in which the goal is to determine the source of accumulated

groundwater contamination detected downstream from a set of candidate source points. In these example problems, we

have hypothesized that one of the candidate source points is a Leaking Underground Storage Tank (LUST), which is the

true source of the detected groundwater contaminant. The task is to use computational modeling of the groundwater

flow scenario in order to accurately identify the LUST. Of course, in real-world analyses, computational modeling

such as this is just one prong of a multi-pronged analysis that includes sampling of the groundwater and conducting



geochemical tests that provide aging information and chemical degradation information, among other metrics.

The problem geometries that are considered in this work were selected for two reasons. First, they are fundamental

and can be used as “building blocks” in the development of more sophisticated potential flow models. Second, each

problem incorporates areas of extreme curvature in the flow regime, which are difficult to model computationally and

require highly precise numerical models in order to obtain satisfactory results. Thus, the example problems are both

challenging and relevant to problems of interest in the geosciences and other fields. For each problem, we develop

two numerical approximations: (i) a coupled CVBEM/NPA model and (ii) an FEM model. The analytic solutions for

these problems are known and given in [18]. The availability of the analytic solutions is important because it allows

us to precisely quantify the computational error of the CVBEM and FEM models.

Each of the problems is formulated as a Dirichlet boundary value problem with boundary conditions specified from

the target potential function. As a consequence of the Cauchy-Riemann equations, the CVBEM approximation of the

target stream function can be developed directly based on the CVBEM approximation of the target potential function.

That is, the CVBEM procedure allows us to generate streamlines using only boundary data from the potential function

and vice-versa. However, for the FEM approach, the target streamlines must be developed using a post-processing

vector gradient procedure.

Once the streamlines are developed, we identify the streamline going through the contamination site. Then, this

streamline can be traced upstream to the source of the contamination. Thus, the LUST is determined as the candidate

source point whose streamline goes through the contamination site. We assess accuracy by determining how well the

streamlines generated by each numerical method trace the streamlines generated by the analytic solution. In particular,

we are interested in whether each numerical method accurately identifies the LUST.

In the following problems, we assume the groundwater is represented by an ideal and incompressible fluid with no

vorticity. Under these conditions, the velocity potential describing the groundwater flow situation is a scalar function

satisfying Laplace’s equation. Thus, the problems are well-suited for modeling with the CVBEM.

3.1 Example Problem 1 - Potential Flow Around a Constrained Circular Obstruction

The analytic representation of the velocity potential for this problem is given in [18] as

!(z) = ⇡ coth
⇣⇡
z

⌘
, z 6= 0. (5)

Since the exact solution is analytic everywhere except at z = 0, the real and imaginary parts of ! are harmonic

functions in C \ {0}. We employed symmetry of the flow situation to justify only modeling the right half of the

modeling area of interest. This approach made it possible to remove the branch cuts associated with the analytic

solutions from the problem domain, thereby making modeling using the CVBEM feasible.



Table 1: Example Problem 1 - Problem Description

Problem Domain: ⌦ =
�
(x, y) : 0  x  4, 0  y  6, and x2 + (y + 1)2 � 1

 

Governing PDE: r2 = 0
Boundary Conditions: �(x, y) = <[⇡ coth

�
⇡
z

�
], (x, y) 2 @⌦

Number of Candidate Computational Nodes
for CVBEM Model: 500
Number of Candidate Collocation Points
for CVBEM Model: 1,000
Number of Nodes for FEM Model: 154,769
Number of Elements for FEM Model: 306,176
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Figure 1: Problem setup for CVBEM model depicting
candidate nodes and candidate collocation points. For
visualization purposes, only 10% of the candidate col-
location points and 50% of the candidate computational
nodes are shown.
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Figure 2: Problem setup for FEM model depicting the
domain mesh. For visualization purposes, only 0.13% of
the nodes and 0.09% of the elements are shown.
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Figure 3: CVBEM computational outcome. In this case,
the CVBEM model accurately tracks the target stream-
line (shown as a dashed black line) and correctly iden-
tifies the LUST. The streamlines were obtained from
the potential outcomes as a consequence of the Cauchy-
Riemann equations.

Figure 4: FEM computational outcome. In this case, the
FEM model fails to accurately track the target streamline
(shown as a dashed black line) and incorrectly identifies
the LUST.



3.2 Example Problem 2 - Potential Flow Around a Free Circular Obstruction

We consider another potential flow problem with Dirichlet boundary conditions. This problem models potential flow

around a free circular obstruction. The analytic representation of the velocity potential for this problem is given by:

!(z) = z +
1

z
+ i

3⇡

4
log(z), z 6= 0. (6)

The solution given in Equation (6) is analytic everywhere except at z = 0. Therefore, the real and imaginary parts of

! are harmonic functions in C \ {0}. We employed symmetry of the flow situation to justify only modeling the right

half of the modeling area of interest. Therefore, the computational outcomes depicted in the left half of the modeling

area of interest were obtained by reflecting the outcomes in the right half. Constructing the problem domain in this

way avoids the branch cut associated with the analytic solution, which makes it possible to model this problem using

the CVBEM.

Table 2: Example Problem 2 - Problem Description

Problem Domain: ⌦ =
�
(x, y) : 0  x  6, �4  y  4, and x2 + y2 � 1

 

Governing PDE: r2� = 0

Boundary Conditions: �(x, y) = <

z + 1

z + i 3⇡4 log(z)

�

Number of Candidate Computational Nodes
for CVBEM Model: 500
Number of Candidate Collocation Points
for CVBEM Model: 1,000
Number of Nodes for FEM Model: 7,833
Number of Elements for FEM Model: 153,360
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Figure 5: Problem setup for CVBEM model depicting
candidate nodes and candidate collocation points. For
visualization purposes, only 7% of the candidate collo-
cation points are shown.
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Figure 6: Problem setup for FEM model depicting the
domain mesh. For visualization purposes, only 1.78% of
the nodes and 1.56% of the elements are shown.
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Figure 7: CVBEM computational outcome. In this case,
the CVBEM model accurately tracks the target stream-
line (shown as a dashed black line) and correctly iden-
tifies the LUST. The streamlines were obtained from
the potential outcomes as a consequence of the Cauchy-
Riemann equations.
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Figure 8: FEM computational outcome. In this case, the
FEM model fails to accurately track the target streamline
(shown as a dashed black line) and incorrectly identifies
the LUST.

3.3 Example Problem 3 - Potential Flow Around a Wall Barrier or Foundation

We consider another potential flow problem with Dirichlet boundary conditions. This problem models potential flow

around a wall barrier or foundation. The analytic representation of the velocity potential for this problem is given by:

!(z) =
�
z2 + 42

�1/2
, z 6= 4i. (7)

The solution given in Equation (7) is analytic everywhere except at z = 4i. Therefore, the real and imaginary parts of

! are harmonic functions in C \ {4i}. We employed symmetry of the flow situation to justify only modeling the right

half of the modeling area of interest. Therefore, the computational outcomes depicted in the left half of the modeling

area of interest were obtained by reflecting the outcomes in the right half. Furthermore, we made an indentation on

the left edge of the problem boundary in order to avoid the branch point at 4i of the analytic solution, thereby making

modeling using the CVBEM feasible. The indentation makes the problem domain ⌦ = ⌦1 \⌦2, where ⌦1 and ⌦2 are

defined as follows:
⌦1 = {(x, y) : 0  x  4, 0  y  8}

⌦2 = {(x, y) : 0  x  0.25, 0  y  4.25} .
(8)



Table 3: Example Problem 3 - Problem Description

Problem Domain: ⌦ = ⌦1 \ ⌦2

Governing PDE: r2� = 0

Boundary Conditions: �(x, y) = <
h�
z2 + 42

�1/2i

Number of Candidate Computational Nodes
for CVBEM Model: 1,000
Number of Candidate Collocation Points
for CVBEM Model: 2,000
Number of Nodes for FEM Model: 177,521
Number of Elements for FEM Model: 353,280
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Figure 9: Problem setup for CVBEM model depicting
candidate nodes and candidate collocation points. For
visualization purposes, only 10% of the candidate col-
location points and 10% of the candidate computational
nodes are shown.

Figure 10: Problem setup for FEM model depicting the
domain mesh. For visualization purposes, only 0.11% of
the nodes and 0.09% of the elements are shown.
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Figure 11: Depiction of the problem situation with the
location of the accumulated contaminant shown as a
green dot. The non-leaking candidate source points are
shown as blue triangles, and the actual LUST is shown
as a red triangle.
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Figure 12: Zoomed-in comparison of the CVBEM and
FEM numerical outcomes. In this case, the CVBEM
streamline, shown in green, accurately tracks the target
streamline, which is shown as a black dashed line. The
FEM streamline, shown in blue, is north of the target
streamline and does not accurately identify the LUST.



4 DISCUSSION AND CONCLUSION

The CVBEM has been used to model groundwater contaminant transport problems since at least as early as 1986 [19].

In this paper, we consider an important problem in groundwater transport; namely the identification of a LUST when

contamination has been detected downstream from a set of several possible sources. These types of problems are often

approached using geochemical analyses. However, the outcomes of such analyses can be buttressed by computational

outcomes such as those that are shown in this work.

In this work we examined three Dirichlet BVPs of the Laplace type. The first example problem considers potential

flow around a constrained circular obstruction. The second example problem considers potential flow around a free

circular obstruction. And the third example problem considers potential flow around a wall barrier or foundation.

These demonstration problems involve the computational difficulty of modeling flow regimes with regions of extreme

curvature. The areas of extreme curvature require extra modeling attention and computational effort in order to obtain

results with satisfactory accuracy, which makes these problems interesting and relevant to the geosciences and other

fields. In the example problems, we employed the symmetry of the flow situations to justify only modeling the right

half of the modeling area of interest. Therefore, the computational outcomes depicted in the left half of the modeling

area of interest were obtained by reflecting the outcomes in the right half.

The CVBEM models used herein employ a recently-developed NPA from our research group, which has been

shown to select highly efficient locations for computational nodes and collocation points such that the CVBEM model

is capable of achieving an accurate solution while using relatively few terms in the approximation function [9]. These

CVBEM models were compared with FEM models of the same problems that were developed using the PDE Modeler

application within the program MATLAB. The CVBEM models correctly identified the LUST in the three problems

that were examined, but the FEM models did not correctly identify the LUSTs. Part of the error of the FEM models

came from the post-processing step of computing the gradient of the modeling outcome in order to obtain streamlines

from the computed potential values. However, this step was not necessary in the CVBEM modeling as a consequence

of the Cauchy-Riemann equations. The additional accuracy provided by CVBEM models for these problems can be of

immense importance as the ability or inability to track groundwater contamination can trigger environmental, health,

and legal repercussions.
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